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Abstract 
In applied settings, computational models of memory have 
proven useful in making principled performance predictions. 
Specifically, historical data are used to derive model 
parameters in order to enable out-of-sample predictions. 
Parameters are typically fit to meaningful subsets of data. 
However, labels that demarcate what constitutes a 
“meaningful” subset are not always available. Here, we utilize 
a data-driven method to cluster past performance into subsets 
possessing statistical similarities. We contrast predictions from 
cluster-specific model parameters with predictions based on 
subsets that are artifacts of the experimental design. We show 
that cluster-based predictions are at least as accurate as the 
chosen baselines and highlight additional advantages of the 
data-driven approach.  

Keywords: learning; memory; k-means clustering; 
computational model; prediction 

Introduction 
Psychological models of learning and forgetting have largely 
focused on explaining rather than predicting (Yarkoni & 
Westfall, 2017). That is, models are evaluated with regard to 
how well they fit data in various experimentally controlled 
conditions. To leverage such models’ capabilities in applied 
settings, however, their ability to accurately predict new 
observations is paramount. One standard method for 
evaluating such predictions is to derive model parameters 
from historical data and apply them to new data (Shmueli, 
2010). 

Here, we focus on predicting individual, item-level 
responses. Deriving model parameters through standard fits 
to historical data raises the question of what data should the 
model be fit to optimize predictive validity? One method for 
parsing the data lies with estimating a unique set of 
parameters for each user’s exposures to an item (i.e., a 
trajectory) to afford maximum flexibility in the model.  This 

method comes at the cost of potentially overfitting the 
individual’s performance and hindering out-of-sample 
predictive ability. Conversely, estimating a single set of 
parameters across all trajectories protects against overfitting 
the sample, but forfeits the ability to utilize more nuanced 
differences between trajectories that may be lost during data 
aggregation. Consequently, the ideal approach depends on 
identifying meaningful subsets of data from which 
parameters can be obtained that produce valid out-of-sample 
prediction. 

As alluded to previously, there are various ways to parse 
historical data into meaningful subsets. In scientific contexts, 
natural subsets stem from experimental conditions. Similarly, 
data can be segmented at the level of the individual user. For 
the purpose of making predictions, the assumption for such 
segmentation is that parameters describing the average 
behavior either within a condition or for an individual user, 
can be used to predict performance on future observations. In 
naturalistic contexts, however, condition labels may be 
absent, vague, or inconsistent. Thus, the creation of subsets 
becomes a problem of data-driven dimensionality reduction. 
K-means clustering has been used with success to reduce 
high-dimensional skill representations, and has allowed for 
increased computational efficiency and enhanced 
interpretation (e.g., Ritter et al., 2009). Such data-driven 
methods detect patterns in the historical data, and the number 
and content of meaningful subsets are prescribed by the data 
themselves. Predictions are made under the assumption that 
homogeneous performance profiles in the historical data are 
likely to be similar in out-of-sample data.  

In the current work, we assess the predictive capabilities of 
a computational process model in a standard paired-
associates learning task that imposed strict experimental 
control on the repetition schedules. Specifically, we contrast 
the quality of predictions made using (a) reliable labels that 
are artifacts of the experimental design (“condition” and 



“user”), or (b) a data-driven clustering method in which the 
subsets are derived directly from accuracy in the historical 
data. 

Methods 

Data 
The data come from a multi-session paired-associate learning 
task in which 61 participants studied Japanese-English word 
pairs according to six tightly regimented schedules. An 
overview of the aggregate performance is provided in Figure 
1. The six experimental conditions result from crossing two 
inter-trial-intervals (ITI; either 2 or 11 intervening trials) and 
three inter-session-intervals (ISI) between the first and 
second session that could be 0, 7, or 14 days—the 0-day ISI 
was a break of approximately five minutes between sessions. 
Both ITI and ISI were manipulated within-subject and 
participants studied five unique word-pairs in each condition 
(30 items total per user). The ISI between session two and 
three was always seven (plus/minus two) days. 

The first repetition showed both the Japanese (cue) and 
English (response) word on screen. Participants typed the 
response to proceed. Accuracy for this response was set to 0 
(in Figure 1 and reported analyses) to reflect the lack of prior 
knowledge of Japanese, which participants were screened 
for. All subsequent repetitions only showed the cue and were 
followed by corrective feedback.  

As seen in Figure 1, clear differences in the aggregate 
performance between the experimental conditions were 
observed. Acquisition is markedly better for short ITI word-
pairs in the first session but long-term retention (repetition 
21) is substantially better for long ITI items, especially at 
longer ISIs.  

 

 
Figure 1. Mean performance at each repetition for the six 
experimental conditions. ITI = inter-trial-interval; ISI = inter-
session-interval between first and second session. 

The Predictive Performance Equation (PPE) 
Given space limitations in the current format, we present a 

condensed overview of PPE’s mechanisms and refer the 
interested reader to the extensive description in Walsh et al. 

(2018). Figure 2 summarizes how performance can be 
predicted (P) using timing information (ti) in conjunction 
with four free parameters (m, b, τ, and s). To fit the model to 
empirical data—that is, to derive the best-fitting free 
parameters—two pieces of information are required: a 
timestamp and a performance metric. The best-fitting 
parameters are found by minimizing the sum-of-squares error 
between PPE’s P and empirical performance. 

 

 
Figure 2. Predictive Performance Equation (PPE) mechanism 
and required information.  
 

In practice, parameters are estimated for a relevant subset 
of data, which necessitates a third piece of information to be 
associated with each observation: a “label” that demarcates 
the subsets. The current work focusses on choosing an 
appropriate “label” that segments the data such that extracted 
parameters afford valid out-of-sample predictions. The 
following section will detail five approaches to utilizing 
existing or data-driven labels to predict performance. 

Procedure 
The data were first split into a training and a test set using an 
80/20 split that ensured 80% of an individual user’s 
trajectories were assigned to the training set (Yarkoni & 
Westfall, 2017). Parameters were extracted from the training 
set and predictions were generated for the test set. In the 
following, we will outline five approaches that differed in 
how they segmented the training data in order to derive PPE 
parameters (which are in turn used to generate predictions). 
They fall into two categories: cluster-based and control 
approaches. The former utilizes data-driven clustering to 
partition the data, while the latter relies on labels available as 
meta-data: user IDs and experimental conditions.  

 
Cluster-based approaches All trajectories in the training 
data were treated in complete isolation (i.e., independent of 
the user or experimental condition they were associated with) 
and subjected to the k-means clustering algorithm (Hartigan 
& Wong, 1979). This approach originates from the signal 
processing literature, and aims to divide a set of observations 
into distinct clusters, such that individual observations belong 
to the cluster possessing the nearest mean. We settled on an 
eight-cluster solution because (a) the decrease in summed 
within-cluster sum of squares reached an asymptote at eight 
cluster centers, and (b) inspection of the cluster centroids 
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suggested that trajectories were grouped into behaviorally 
meaningful clusters (see Figure 3).  

 

 
Figure 3. Cluster centroids at each repetition for the eight 
clusters derived from the training data. Panels’ headings 
show the percentage of trajectories assigned to the cluster. 
 

We then fit PPE to all trajectories in each cluster. This 
resulted in a unique set of the four free parameters for each 
data-derived cluster. Next, the trajectories in the test data 
were assigned to one of the clusters in Figure 3. Specifically, 
the root-mean-squared-error was computed between a 
trajectory—a vector of accuracy data—and each cluster’s 
centroids—shown in Figure 3—and the trajectory was 
assigned to the cluster with the lowest RMSE. Lastly, using 
the PPE parameters associated with the cluster a trajectory 
was assigned to, predictions were generated for all 
trajectories in the test data.  

In the Results section we will focus on evaluating the 
predictions for the 21st repetition specifically. Therefore, 
when assigning new trajectories to pre-defined clusters, we 
emulated a realistic scenario and assumed that only the first 
20 repetitions of a trajectory were available when it must be 
assigned to a cluster.  

The cautious cluster-based approach worked in the 
following way. Given that the last/withheld response could 
either be incorrect or correct, the cluster assignment was run 
twice; first, assuming that the incomplete trajectory would be 
completed with a final incorrect response, and next, assuming 
it would be completed with a final correct response. If the 
trajectory was assigned to the same cluster independent of the 
assumed last response, PPE predictions were generated using 
the parameters associated with the unambiguously assigned 
cluster. If the incomplete trajectory was assigned to different 
clusters depending on the assumed final response, two 
predictions were generated using the PPE parameters of the 
two assigned clusters. Those two predictions were averaged 
to yield a single, “cautious” prediction. 

For comparison purposes, we additionally implemented 
two baseline approaches; a blind cluster-based approach in 
which only the incomplete trajectory (i.e., repetitions 1-20) 
was used for assignment to one of the eight clusters, and an 
omniscient cluster-based approach in which the complete 

trajectory was used as if the final repetition had already been 
observed. The omniscient approach mimicked the control 
approaches in the sense that it provided reliable “labels” for 
the membership of a trajectory (i.e., we know which 
experimental condition and which user a trajectory belongs 
to) and constituted a form of intentional data leakage.  

 
Control approaches As outlined above, we compared the 
cluster-based approaches with two control approaches. Using 
the same training/test split of the data as described in the 
previous section, a unique set of PPE parameters was derived 
for (a) each experimental condition, and (b) each user. 
Therefore, the information available for a single condition or 
user provided the general data pattern for PPE equations to 
estimate its best-fitting parameters. The procedure was 
otherwise the same as for the cluster-based approaches.  
Using the condition’s/user’s PPE parameter estimates, a 
prediction was made for each trajectory in the test data. 

Results 
Before detailing and comparing the results for the control 

and cluster-based approaches, we should establish that the 
clusters derived from the training data (Figure 3) did not 
merely mimic the experimental conditions. Figure 4 verifies 
that this was not the case. However, some clusters were 
preferentially assigned to certain experimental conditions. 
For example, cluster E mostly covered ISIs of one or two 
weeks, cluster F was mostly assigned to Short ITI conditions, 
and cluster H was mainly assigned to the two 0 Day ISI 
conditions. However, most clusters were spread across 
(almost) all experimental conditions—no cluster exclusively 
mapped onto a single condition. This non-exclusivity 
corroborates that the data-driven clustering leveraged 
patterns in the data that were not directly dictated by the 
features of the experimental conditions. These differences in 
patterns between Figure 1 and Figure 3 highlights that the 
clustering algorithm isolates distinct performance profiles 
that are washed out by aggregating performance within a 
condition (clusters B, C, D, and G especially), potentially 
accounting for meaningful psychological variables.  

 

 
Figure 4. The overlap between clusters and experimental 
conditions is shown by tallying how frequently a trajectory 
from a given condition was assigned to each cluster. 
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Control approaches 
The first control approach uses the condition-constrained 

PPE parameters to make predictions for the test data. These 
predictions are shown for the 21st repetition in Figure 5. 
Experimental conditions are plotted against performance, 
where the gray dots indicate the actual accuracy on the final 
repetition and the colored dots show the model’s predictions. 
Observed accuracy was jittered both horizontally and 
vertically to create a visual impression of the relative number 
of responses in each condition. The predicted performance 
was only jittered horizontally to preserve the precise values 
(the same applies to Figure 8 and Figure 9). 

The condition-based predictions shown in Figure 5 were 
highly homogenous within a condition. Visual comparison 
with the final repetition in Figure 1 suggests that predictions 
closely matched the aggregate empirical data. Closer 
inspection—a detailed description of which is beyond the 
scope of the current report—confirmed that PPE fit the six 
empirical trajectories in Figure 1 very well. The low variance 
in predicted values can probably be attributed to the very 
similar temporal inputs. As described above, PPE requires 
two inputs and one of those—the timestamps—should be 
very alike within each condition. No matter what the exact 
values of the second input to PPE (i.e., accuracy), the 
predictions are largely identical within a condition. As a 
result, the condition-based predictions resemble the empirical 
means but are rather non-committal (that is, closer to 0.5 than 
either 0 or 1).  

 

 
Figure 5. Predicted performance (colored) compared with 
actual performance (gray) for the condition-based approach. 

 
The user-based predictions are shown in Figure 6. 

Predicted performance (colors and shapes matching Figure 1) 
is contrasted with actual accuracy (gray; no jitter) for each 
user. Users are ordered on the x-axis according to their actual 
performance (overall number correct; ordering is consistent 
across panels).  

Two patterns surface in Figure 6. First, the user-based 
predictions showed much larger variability than the 
condition-based predictions: Scanning horizontally across 
the figure’s panels indicates that predictions are scattered 
across most of the y-axis in every condition (between-user 
variability) and scanning vertically, we see that both low and 

high performers—at the left and right ends of the x-axes, 
respectively—exhibit substantial within-user variability. 
This is likely because the per-user set of PPE parameters is 
used to generate predictions for new trajectories of varying 
schedules. This is in stark contrast with the condition-based 
approach, in which all trajectories within a condition have 
very homogeneous temporal structures. Second, the 
predictions steadily increase from the left to the right side of 
Figure 6. This implies a correlation between predicted and 
observed performance that is confirmed by a significant 
positive point-biserial correlation (r = 0.405, t(357) = 8.361, 
p < 0.001) computed across all conditions. 

 

 
Figure 6. Predicted performance (colored) compared with 
actual performance (gray) for the user-based approach. 

 

Cluster-based approaches 
A central step in the cluster-based approaches is the 

assignment of trajectories from the test data to one of the 
clusters derived from the training data (see Figure 3). The 
only difference between the omniscient and blind approaches 
is whether they did or did not (respectively) take the last 
repetition into account when assigning a trajectory to a 
cluster. The confusion matrix in Figure 7 shows that under 
these different assumptions, the same trajectory can be 
assigned to different clusters. Most confusions occur between 
clusters A and E as well as F and E—specifically, the blind 
approach preferentially assigns trajectories to either A or F, 
many of which are assigned to cluster E by the omniscient 
approach. On the other hand, all assignments to clusters G 
and H are unambiguous—no matter whether the last 
observation is known or not. The confusion matrix suggests 
that ambiguous assignments in the cautious approach will 
primarily arise if a trajectory most closely matches cluster A, 
E, or F (a pattern confirmed in Figure 9). 

The blind cluster-based predictions (not shown) look very 
similar to the omniscient predictions (Figure 8). While the 
condition-constrained predictions tightly center around the 
empirical means, the blind and omniscient cluster-based 
predictions emulate a cluster’s centroid on the last repetition 
but exhibit higher variance—likely because the same model 
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parameters are used across trajectories that have very 
different temporal structures (cf. Figure 4).  

 

 
Figure 7. Confusion matrix comparing assignment of new 
trajectories for the blind and omniscient approaches. 
 

Consequently, the primary difference between the blind 
and omniscient approach is a result of the differential 
assignments apparent in Figure 7: The blind approach 
assigned 113 trajectories to cluster F, while the omniscient 
approach only assigned 77 trajectories to the same cluster (7 
of which the blind approach assigned to cluster E). 
Conversely, the omniscient approach assigned 60 trajectories 
to cluster E, only 3 of which were also assigned to cluster E 
by the blind approach. The remaining omnisciently assigned 
E trajectories were blindly assigned to either A or F.  

One stark difference between the omniscient cluster-based 
predictions and the condition-based predictions is that the 
former commits to more extreme predictions: In clusters A, 
F, and G, for example, performance is predicted to be poor 
with great certainty for virtually all observations in that 
cluster (and the reverse is true for cluster E; Figure 8). For 
clusters whose centroid on the 21st repetition is at neither 
boundary (e.g., clusters B, D, and H), on the other hand, 
predicted performance is more spread. 

 

 
Figure 8. Predicted performance (colored) compared with 
actual performance (gray) for the omniscient cluster-based 
approach. 

 
For the cautious cluster-based approach, the equivalent of 

Figure 5 and Figure 8 is more complicated because a given 
trajectory does not necessarily have a single cluster 
associated with it. As explained in the Methods, each 
trajectory is assigned to a cluster twice; once assuming the 
last response will be incorrect and once assuming it will be 
correct. In 52.1% of the trajectories, this resulted in the same 
assigned cluster, as revealed in the lower panel of Figure 9. 
Not surprisingly, for trajectories that were cautiously 
assigned to the same clusters, the pattern is very similar to the 
omniscient approach (cf. Figure 8). The upper panel in Figure 
9 shows the trajectories that were assigned to different 
trajectories depending on the assumed last response. A data 
point’s location in the upper panel is determined by the 
cluster assigned when the last response is assumed to be 
incorrect, while its color is determined by the cluster assigned 
if the last response is assumed to be correct. 
 

 
Figure 9. Predicted performance (colored) compared with 
actual performance (gray) for the cautious cluster-based 
approach. 

 
Several interesting patterns emanate from Figure 9. First, 

not a single trajectory has been assigned to cluster E, 
independent of whether the last response was assumed to be 
correct or not. Second, not a single trajectory was 
unambiguously assigned to cluster F—however, the majority 
of ambiguous assignments (71.5%) are a conflict between 
assignment to cluster F (assuming the last repetition is 
incorrect) and cluster E (assuming it is correct). Similarly, 
21.5% of ambiguous assignments are to clusters A and E. 
This confirms what we derived from the confusion matrix: 
Trajectories most confused by blind and omniscient 
assignments will present the largest challenge to the cautious 
approach. Third, in these cases of differential A-E and F-E 
assignments, the resulting predictions (orange points in upper 
panel of Figure 9) center around 0.5 because cluster A and F 
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predict near-floor and cluster E predicts near-ceiling 
performance, which produces a cautiously uncertain 
prediction of roughly 0.5.  

In an attempt to summarize and compare the predictions 
made for the 21st repetition in the test data, Table 1 lists three 
model fit statistics for each of the five approaches. The area 
under the ROC curve (AUC; Fawcett, 2006) can be 
interpreted as the probability that the predicted performance 
will be ranked higher for a randomly chosen correct response 
than a randomly chosen incorrect response. This probabilistic 
interpretation highlights that the AUC is based on the relative 
rank of predictions rather than the distance from the “truth.” 
The root-mean-squared-error (RMSE), on the other hand, 
quantifies the absolute distance between prediction and 
“truth.” The logarithmic loss is expressed on an open-ended 
scale and imposes a harsh penalty on incorrect predictions. 
Each of these statistics emphasizes different dimensions of 
the quality of an approach’s predictions and condense the 
nuanced effects discussed above into a single number for easy 
comparison. 

 
Table 1. Model fit statistics for repetition 21 in the test data. 

 

Approach AUC† RMSE‡ Log 
loss‡ 

Condition 0.676 0.475 15.5 
User 0.736 0.457 13.7 
Blind clusters 0.655 0.536 14.2 
Omniscient clusters 0.902 0.351   8.3 
Cautious clusters 0.681 0.485 15.6 

 

Discussion 
The main goal of the current work was to explore a data-

driven method to segment performance profiles for purposes 
of estimating model parameters to produce valid out-of-
sample predictions. Out-of-sample predictions generated 
from variations of data-driven clustering methods were 
contrasted with out-of-sample predictions generated from fits 
to each subset indicated by reliable labels (experimental 
conditions and users). While summary fit statistics suggest 
that the condition and clustering approaches performed 
approximately equally well (Table 1), we believe that the 
clustering-based approach provides a more nuanced picture 
that is revealed only when the predictions are inspected 
closely (Figure 5 through Figure 9). 

The data used here were highly structured. This has two 
consequences relevant for the current work. First, the 
condition labels provided a great deal of implicit information 
since the experimental manipulation created temporally 
distinct repetition schedules. This temporal homogeneity in 
the trajectories associated with each condition resulted in 
largely invariant predictions for the 21st repetition (Figure 5). 
Conversely, grouping by user, we observed that predictions 
varied significantly within a user but there was a positive 
correlation between predicted and observed accuracy. Both 
the condition and user approach results suggest that fitting 

PPE to a subset of data works as intended and PPE capitalizes 
on information that is coherent within a given subset (i.e., the 
temporal regularities within each condition or the ability of a 
user across various timings). 

The second consequence of using these highly structured 
data pertains to the fixed number of repetitions. Knowing that 
trajectories from the test data would inevitably match 
trajectories in the training data in terms of their length 
allowed us to extract a single set of clusters (Figure 3). In 
naturalistic data, trajectories will undoubtedly vary in length, 
potentially complicating the derivation of clusters and the 
assignment of new trajectories to clusters. If the dataset of 
interest is large enough, a potential solution would be to bin 
trajectories by their lengths and derive clusters for each bin. 
For example, the clusters in Figure 3 could be used for 
trajectories that contain roughly 20 observations, and another 
set of clusters could be derived and referenced for trajectories 
that contain >30 or <10 observations. 

The exploration of the data-driven cautious clustering 
approach presented here has both advantages and 
disadvantages related to its assumption that the to-be-
predicted response in a trajectory could be either correct or 
incorrect. One downside is that if this assumption leads to the 
same trajectory being assigned to different clusters (top panel 
Figure 9) the resulting cautious prediction is essentially 
always a non-committal 50%. This might be partially due to 
the specific data used here, which yielded two highly 
confusable clusters that make opposite predictions for the 
final repetition (E and F, see Figure 3). In this scenario, a non-
committal prediction could be considered sensible. One 
advantage of the cautious approach is that in the reverse 
scenario, unambiguous assignment independent of the 
anticipated response, predictions are fairly accurate and more 
confident than in the condition approach. 

An additional advantage of clustering the data from an 
experimental study is a descriptive overview that adds nuance 
to other forms of aggregation. Here, for example, each 
trajectory was treated in complete isolation, independent of 
the user or experimental condition it was associated with. 
Figure 3 suggests that the majority of trajectories are assigned 
to clusters with very high performance that mostly differ on 
repetitions 11 and 21 (cf. clusters E, F, and H) but that there 
are also clusters that capture slower (clusters B, C, D) or 
incomplete learning (cluster G). In conjunction with the 
mapping provided in Figure 4 (and its equivalent for user-
cluster mappings), the clusters constitute an especially useful 
a descriptive tool. It is possible that distinct clusters map onto 
psychological variables (mnemonic strategies, fatigue, etc.) 
outside the scope of the conducted study. Another potential 
extension of the current work would stem from utilizing 
alternative clustering approaches (see Berkhin, 2006 for an 
extensive survey). 

Due to space constraints, we did not report in more detail 
the fit to the first 20 repetitions and instead chose to highlight 
the predictive accuracy on the 21st repetition. Given the 
train/test split procedure, however, the model actually 
predicted all observations in the test set. A closer 



investigation of the fit to the first 20 repetitions—especially 
the expected dip in performance on repetition 11—would be 
a natural extension of the current work. Similarly, an in-depth 
analysis and discussion of the estimated model parameters 
should prove productive. 

We believe the data-driven clustering approach presented 
here has utility in applied scenarios for which theoretical 
assumptions about meaningful subsets of data are hard to 
make or necessary meta-data are unavailable (similar to, for 
example, Ayers, Nugent, & Dean, 2008). Additionally, 
clustering reveals patterns in the data obscured by 
aggregation along conventional dimensions (e.g., Figure 1 
masks the information in Figure 3, particularly if Figure 4 is 
also considered). Therefore, the procedure outlined here 
should be repeated and refined across both experimental and 
naturalistic datasets in order to better isolate settings for 
fruitful application. 
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