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Abstract

Cardiopulmonary resuscitation (CPR) is the single greatest de-
terminant in survival from cardiac arrest and is an essential
part of every medical professional’s toolkit. Effectively re-
sponding to cardiac arrests requires CPR proficiency, which
is best retained through frequent training. One such model is
Resuscitation Quality Improvement (RQI)® that requires users
to exhibit proficient performance in compression and ventila-
tion skills every 3 months. While frequent refresher trainings
are superior to the traditional 24-month intervals (Cheng et al.,
2020), they still need to consider inter-individual differences.
Healthcare environments are rife for personalized, adaptive ap-
proaches to tracing users’ proficiency over time. To this end,
we explore how users that perform similarly over time can be
clustered together. Such performance profiles could ultimately
enhance the benefits of frequent training with personalized effi-
ciency for users with different needs. With the long-term goal
of building an adaptive scheduling tool in mind, we present
some initial explorations in this domain. Using k-means clus-
tering, we show that a small number of clusters seems suffi-
cient to create meaningful performance profiles to make out-
of-sample predictions. Furthermore, our simulation study sug-
gests that fuzzy membership to said clusters can be leveraged
to enhance predictions. We discuss potential next steps in
which these fuzzy performance profiles can be employed by
more powerful predictive models to move the field towards
personalized, adaptive training schedules that improve learn-
ing efficiency with the goal of increasing survival outcomes
after cardiac arrest.

Keywords: Cardiopulmonary Resuscitation (CPR); Refresher
training; Resuscitation Quality Improvement; Personalized
learning; Clustering; Performance predictions

Introduction
The quality of CPR provided by medical professionals has
been shown to be inconsistent in both in-hospital (Abella et
al., 2005) and out-of-hospital (Wik et al., 2005) cardiac ar-
rests. To improve consistency, various enhancements to how
the necessary skills are taught and maintained have been rec-
ommended (Cheng et al., 2018). The shift in focus is re-
flected in the 2020 AHA Guidelines for Cardiopulmonary
Resuscitation and Emergency Cardiovascular Care (Cheng
et al., 2020). These enhancements to CPR training can im-
prove educational outcomes, patient outcomes, and survival
after cardiac arrest (Cheng et al., 2018)—primarily by in-
creasing educational efficiency as a factor in Utstein’s for-
mula for survival (Søreide et al., 2013). Increasing educa-
tional efficiency includes instructional design features that
support a mastery learning model such as the use of feedback
(Gruber, Stumpf, Zapletal, Neuhold, & Fischer, 2012; Yeung
et al., 2009), spaced learning (Y. Lin, Cheng, Grant, Currie, &
Hecker, 2018), assessment, and innovative educational strate-
gies (Cheng et al., 2018). Performance can be scored objec-
tively against clear guidelines (Merchant et al., 2020), which
means rich usage logs can be maintained for each user. Thus,
CPR training is an ideal domain for technology-enhanced
adaptive learning and recent efforts are focused on increased
adaptivity (Oermann, Krusmark, Kardong-Edgren, Jastrzem-
bski, & Gluck, 2021).

Here, we will emphasize one dimension of quality CPR:
frequency of training. Healthcare providers are trained in



CPR as part of their training and are typically required to
retrain on a fixed schedule to maintain compliance. Histor-
ically, these trainings have occurred every two years, but re-
cent evidence suggests that more frequent refresher trainings
are necessary to prevent skill decay (Cheng et al., 2018; Sut-
ton, Nadkarni, & Abella, 2012). The Resuscitation Quality
Improvement (RQI®) program for CPR skills, for example,
has participating users complete quarterly skills assessment.
The RQI program has been shown to significantly increase
users’ CPR skills (Kardong-Edgren et al., 2020) but we be-
lieve further improvements can be made by personalizing the
scheduling of refresher trainings to the needs of individual
users. Recent work suggests that adaptively scheduling train-
ing intervals can lead to faster acquisition, better retention,
and lower costs and risks (Oermann, Krusmark, Kardong-
Edgren, Jastrzembski, & Gluck, 2020; Kerfoot, 2010; Oer-
mann et al., 2021).

To aid and inform the transition from fixed to adaptively
scheduled retraining intervals, the current study will explore
three aspects related to extracting and leveraging performance
profiles across training sessions. If similar performance in
the past is likely to result in similar performance in the fu-
ture, predictions can be informed by clusters of similar per-
formance profiles (e.g., because two users make similar mis-
takes or because knowledge about two skills decays at similar
rates). The long-term goal is to leverage meaningful profiles
to create personalized refresher training schedules that can
replace fixed-interval assessments. To this end, we will ex-
plore three research questions pertaining to clustering perfor-
mances to extract user profiles:

RQ1: How to determine the number of clusters/profiles?
The “optimal” number of clusters depends on the purpose
of the analysis and is rarely easily quantifiable (Kodinariya
& Makwana, 2013). We consider our main goal predicting
rather than explaining (Shmueli, 2010). Therefore, we de-
vised a simulation study on usage logs that focuses on quan-
tifying the out-of-sample prediction error (Yarkoni & West-
fall, 2017) to approximate a useful number of performance
profiles.

RQ2: Can fuzzy instead of crisp cluster membership im-
prove predictions? We used k-means clustering (Hartigan &
Wong, 1979) for our explorations. By default, clustering al-
gorithms assign each input to one of the k clusters. Such crisp
assignment can be contrasted with fuzzy assignment (Ruspini,
1969; Dunn, 1973; Bezdek, 1981) in which each input be-
longs to all k clusters simultaneously and has membership
coefficients γk that indicate its relative proximity to each clus-
ter k (see Methods for details and footnote 1 for a numerical
example). Crisp assignment effectively reduces all members
of a cluster to be identical, while the fuzzy assignment im-
poses less of a dimensionality reduction. Fuzzy assignment
could aid predictions (by pooling important variance and in-
between states) or harm predictions (by amplifying noise).

RQ3: Which aspects of performance should be clustered?
To maintain compliance in the RQI program, each user needs

to be proficient in four related but independent CPR skills:
compressions and ventilations performed on an adult and an
infant manikin (Merchant et al., 2020). Correlations between
skills are positive but not strong enough (r < 0.4; see Dis-
cussion) to consider performance across skills interchange-
able. Consequently, it might make sense to assign each
user’s performance on a given skill to a distinct cluster (cf.
Fig. 1B). However, if scheduling of future refresher train-
ings was a function of cluster membership, it would make
more sense to assign each user’s performance across all skills
to a distinct cluster (cf. Fig. 1A); otherwise, different skills
would be scheduled to be retrained at different intervals—
that might be most effective but the administrative burden
on hospitals might be untenable. To illuminate the poten-
tial (dis)advantages of either approach, we will explore and
compare both.

In the following, we will describe the dataset we used to
explore the above questions. Next, the simulation study’s ap-
proach will be outlined in detail before the results will be pre-
sented. These results and their implications will be discussed
in the final section.

Methods
Dataset
The dataset extracted from users participating in the Resusci-
tation Quality Improvement (RQI®) program for CPR skills
in three hospitals in the USA. Users participated every 3
months (quarterly) and we selected a period of 5 quarters (i.e.,
Q1, Q2, . . . ).

Users experienced a skills assessment with feedback in all
quarters. These measured a user’s CPR skills on both an in-
fant and adult manikin on the RQI Simulation Station. In each
assessment, users received both auditory and visual real-time
feedback on specific metrics of each skill that accumulated to
an overall score. Each assessment was followed by a com-
prehensive debriefing. In Q1 and Q5, a baseline assessment
without feedback was required before the skills assessment
to measure a user’s retention of skill over time. Users were
required to pass each skill assessment (i.e., score ≥ 75%) to
maintain compliance (unlimited number of attempts). The
baseline assessment without feedback in Q1 and Q5 did not
require passing, but users were provided an overall score and
debriefing upon completion.

We only used overall scores on the first attempt in each
quarter. For Q1 and Q5, these were baseline assessment
scores; for Q2–4, these were skills assessment scores (i.e.,
without and with feedback respectively). Baseline scores
were included as a valid measurement of a user’s ability to
perform each skill without the aid of real-time feedback. Only
the first attempt was included as it is the most informative data
point: With passing scores required in every quarter, the last
data point for any skill is always in the range 75–100%. Most
users passed after the first or second attempt. By including
additional attempts, the most discriminating data points were
retained while making it easier to apply the out-of-the-box
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Figure 1: Overview of clustering solutions. (A) The user-based approach considers all 20 observations of a user simultaneously
when clustering: the four skills (adult compressions, adult ventilations, infant compressions, and infant ventilations) are marked
with different shapes across the five quarters (Q1–5). Each user is assigned to one cluster (see N’s in the legend). The dotted
horizontal line at 75% demarcates the proficiency threshold. (B) The skill-based approach considers the five observations
(across Q1–5) associated with each skill separately. Each skill a user performs is separately assigned to a cluster (thus larger
N’s; see legend) (C) The Gap statistic (Tibshirani et al., 2001) estimated for 1 ≤ k ≤ 15 across 10 iterations for the two
approaches. Squares mark the best k̂ in each iteration.

implementation of the clustering algorithm.
We included all users with at least two baselines (N =

3,119). Of these, 1,930 (62%) had scores on all skills in all
five quarters (i.e., complete user trajectories; Fig. 1A) and
there were 8,024 (64%) user-skill combinations with scores
on all quarters (i.e., complete skill trajectories; Fig. 1B).

Simulation study
To address our research questions, we conducted a retrospec-
tive simulation study on the data described above. The simu-
lation followed these steps for 2 ≤ k ≤ 15: (1) The data were
split into training/test sets (70/30) such that each user was ei-
ther in the training or test set; (2) Using complete trajectories
in the training data, k-means clustering was performed; (3)
Each trajectory in the test data was assigned to one of the
k clusters by minimizing the squared Euclidean distance be-
tween trajectories and cluster centroids. Only quarters 1–4
were used for cluster assignment; (4) Crisp predictions are
equal to the centroids of the cluster a trajectory was assigned
to; (5) To make fuzzy predictions, each trajectory’s member-
ship coefficients to each of the k clusters were computed (see
details below). These were used as weights when computing
a weighted average across the cluster centroids1.

1For example, suppose someone’s adult compression scores are
80 in Q1–4. For the three skill-based clusters in Fig. 1B, that trajec-
tory would yield membership coefficients of 0.888, 0.028, and 0.084
for clusters X, Y, and Z, respectively. The cluster centroids for Q5
are 85.7, 79.6, and 13.0 for X, Y, and Z. The unweighted mean across
the three centroids is 59.4; the coefficients-weighted mean is 79.4.
Thus, this hypothetical person’s fuzzy prediction for Q5 would be
biased towards cluster X’s centroid. Their crisp prediction for Q5
would simply be cluster X’s centroid (85.7) since that is the cluster
they would be assigned to.

We used 10-fold cross-validation across two scenarios that
differed in what constitutes a trajectory. In the user-based
scenario, all observations from a single user were considered
a single trajectory comprising 20 observations (four skills
across five quarters; see Fig. 1A). In the skill-based scenario,
the four skills were treated independently and each trajectory
encompassed five observations (one per quarter; see Fig. 1B).
Consequently, a user’s performance on all skills constitutes
their performance profile (i.e., assigned cluster) in the user-
based scenario, while each user can potentially have multiple
performance profiles in the skill-based scenario.

On every iteration of step (2), k-means clustering (Hartigan
& Wong, 1979) as implemented in R 3.6.3 (R Core Team,
2020) was performed with 20 random starts. We chose not
to impute missing data to avoid amplifying patterns already
in the data. At least 60% of trajectories are complete so each
training set should contain sufficient observations to partition
the data into k clusters.

Computing fuzzy membership coefficients in step (5) com-
prised two steps: First, each trajectory’s distance d from the
k centroids c is computed as dk = ∑((x− ck)

2)0.5, where x
is the trajectory. Then, the membership coefficient γ to clus-
ter k is computed by scaling dk relative to all distances D:
γk = [∑(d2

k/D2)(1/(m−1))]−1 with “fuzzifier” m = 2 (Cebeci,
2019). This approach assures that a trajectory’s k coefficients
sum to 1.

For each iteration, prediction errors were computed sepa-
rately for (i) quarters 1–4 (used to assign trajectories to clus-
ters; step (3)) and quarter 5 (predictions), and (ii) crisp and
fuzzy predictions. Specifically, two types of error were cal-
culated: The root-mean-squared-error (RMSE) and the area



under the ROC curve (AUC; (Fawcett, 2006)). The RMSE
expresses the prediction error in units of the original scale,
which is helpful in gauging how close predicted performance
is, on average, to actual performance (lower values are bet-
ter). The AUC was computed by dichotomizing actual per-
formance as above/below the 75% performance threshold.
Hence, the AUC quantifies how well crisp/fuzzy cluster mem-
bership can classify whether predicted performance will be
proficient or not (higher values are better).

This approach allowed us to address our research questions
by (I) checking which value of k minimizes prediction errors
(to determine optimal cluster size), (II) comparing crisp and
fuzzy predictions on the same data (to ascertain the potential
advantage of fuzzy predictions), and (III) directly comparing
user- and skill-based clustering solutions.

Results
Figure 2 summarizes the results of the simulation study and
pertains to all three research questions outlined in the Intro-
duction. The figure shows the two prediction errors AUC (top
row) and RMSE (bottom row) for the skill-based (left col-
umn) and user-based (right column) scenario for 2 ≤ k ≤ 15.
Each panel shows four lines: Dashed lines are the errors com-
puted across quarters 1–4, which were used to make crisp
cluster assignments and compute the fuzzy membership coef-
ficients; solid lines connect errors for the fifth quarter, which
was withheld completely and thus amounts to a real predic-
tion. The two types of prediction that were made—crisp and
fuzzy—are color-coded. With this figure as our guide, we
now consider the three research questions in turn.

First, for both skill- and user-based clusters, the optimal
number of clusters is small. Looking at the solid lines in
Fig. 2, we see that little improvement in achieved beyond
k ≈ 3. The only exception might be making binary pre-
dictions in the fuzzy user-based scenario since the AUC in-
creases up to 8 or 10 clusters. The corresponding decrease
in RMSE, however, is minimal, which indicates absolute ac-
curacy does not increase in lockstep with classification accu-
racy. The RMSE in the skill-based scenario (lower left panel)
shows the most drastic divergence between the crisp and
fuzzy approaches: For crisp predictions in Q5, any k > 2 pro-
duces markedly larger errors, while the corresponding fuzzy
predictions clearly improve if k is increased from 2 to 3 (both
in AUC and RMSE).

The 3-cluster solutions for the user- and skill-based scenar-
ios are shown in Fig. 1A and B, respectively. The skill-based
clusters in particular capture profiles that clearly make sense:
consistently high (X), proficient after Q1 (Y), and only pro-
ficient with feedback enabled (Z). Importantly, each user’s
performance on the four skills could be assigned to different
clusters/profiles. For the user-based scenario, on the other
hand, the three patterns are more subtle (see Fig. 1A) and
simultaneously affect all four skills for a user. However,
again, sensible patterns are apparent: Users only proficient
with feedback enabled (A), consistently proficient (B), and

inconsistent/struggling throughout (C). We also see an overall
trend across the user-based clusters that highlights decreased
performance without live feedback (Q1 and Q5).

Second, there is a consistent advantage of predictions us-
ing fuzzy rather than crisp cluster membership. In Fig. 2,
the blue solid lines are always higher than the orange solid
lines for the AUC (top row) and lower for the RMSE (bottom
row). This difference is particularly stark in the skill-based
scenario, where fuzzy predictions are vastly better than their
crisp counterparts. An additional advantage might be that
fuzziness better protects against over-fitting (analogous to,
e.g., Bayesian model averaging (Hoeting, Madigan, Raftery,
& Volinsky, 1999) or regularization (Hastie, Tibshirani, &
Friedman, 2009)). Here, over-fitting would be apparent if the
dashed and solid lines diverge as k increases, which is the
case for crisp (orange) but not fuzzy (blue) predictions.

Third, predictions are better if individual skills are clus-
tered rather than a user’s entire performance history. Compar-
ing the solid blue lines between the scenarios (left vs. right
column in Fig. 2), we see higher AUC and lower RMSE for
the skill-based scenario. The reverse is true for orange lines,
which reflects the general advantage of fuzzy predictions out-
lined in the previous paragraph. Hence, these results sug-
gest that using cluster membership alone, the most accurate
predictions are made using skill-specific trajectories’ fuzzy
memberships to 3 clusters.

To complement the results directly relevant to our research
questions, we also included a short exploration of what might
be considered the optimal number of clusters outside a pre-
diction framework. To this end, we computed the Gap statis-
tic (Tibshirani et al., 2001) as implemented in (Maechler,
Rousseeuw, Struyf, Hubert, & Hornik, 2019) for 1 ≤ k ≤ 15
using 250 bootstrap samples on ten iterations each with ran-
dom subsets of 80% of users. Results are summarized in
Fig. 1C, showing the estimated Gapk values (the ten runs
are grouped by lines, color-coded for approach). Again, we
contrast the user- and skill-based approaches and, following
(Tibshirani et al., 2001), define the best solution as the small-
est k for which Gap(k) ≥ Gap(k+ 1)− sk+1, where s is the
standard error. For each iteration in Fig. 1C, those instances
are highlighted as squares, which fall between 5 ≤ k ≤ 14 for
both approaches. Thus, if our goal was to explain rather than
predict (Shmueli, 2010), a larger number of clusters might
be appropriate. However, our simulations showed that with
prediction as our main goal, a small number is sufficient and
mistakenly using the results of this explanatory analysis for
prediction purposes would result in over-fitting.

Discussion
Our simulation on usage logs of medical professionals’ CPR
refresher training suggests that a relatively small number of
performance profiles is sufficient to make decent predictions.
These predictions were consistently more accurate if mem-
bership to each performance profile was fuzzy rather than
crisp and if skills were considered independently.
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Figure 2: Prediction errors AUC and RMSE in the test sets. Comparing errors computed on Q1–4 (assigned) and Q5 (predicted)
for the crisp (orange) and fuzzy (blue) predictions. Detailed description in the first paragraph of the Results section.

Contextualizing these findings, it should be acknowledged
that this a difficult prediction task. The only information used
in our current explorations are the overall scores of first at-
tempts of each learner’s mandatory, quarterly skills assess-
ments. Nevertheless, membership to a small number of clus-
ters affords above-chance predictions. Predictions are con-
siderably better if (a) skills are considered independently, (b)
memberships are “fuzzified”, and (c) we only want to pre-
dict proficiency (i.e., above/below threshold) rather than exact
scores (see Fig. 2). One potential explanation is that differ-
ences in learning profiles stem from different sources that are
each captured by different clusters. Fuzzy memberships al-
low for those sources to be pooled to make predictions, while
crisp profiles more rigidly represent a single source of vari-
ance. The promising results in the current exploration suggest
a number of extensions that should further improve the pre-
dictive accuracy. We will discuss some of these below.

Lower-level scores, exact timestamps, and additional in-
formation about users could be leveraged to greatly enrich
the data. Each skills’ overall score is comprised of several
sub-scores (e.g., compression rate, compression depth, hand
positioning, etc.). Providing personalized feedback based on
sub-scores has proved effective (Yeung et al., 2009; Cheng et
al., 2015), suggesting that sub-scores could be leveraged for
fine-tuning predictions. Furthermore, demographic informa-
tion such as body mass index have been linked to quality CPR
(Sayee & McCluskey, 2012; C.-C. Lin et al., 2016; López-
González et al., 2016) and it is likely differences in work set-
ting within a hospital would be relevant, too (e.g. emergency
care vs. outpatient clinic).

To model such greatly enriched data, more sophisticated
models would need to be deployed. Machine learning algo-

rithms for supervised learning would be the obvious choice
since they have an unparalleled ability to learn arbitrary statis-
tical regularities in sufficiently large, annotated data (Hastie et
al., 2009). Such models—especially the “deep” kind (LeCun,
Bengio, & Hinton, 2015; Botvinick, Wang, Dabney, Miller, &
Kurth-Nelson, 2020)—are great at making performance pre-
dictions but it is often impossible to determine how a pre-
diction was arrived at (Gunning, 2017). The cluster-based
approach presented here is the polar opposite—for the crisp
case, predictions directly follow from someone’s proximity to
a given cluster; for the fuzzy case, predictions are weighted
by someone’s relative distance from each cluster. A promis-
ing middle ground between these two extremes—models with
and without assumptions (Pelánek, 2017, Fig. 4)—are cog-
nitive models. These use theoretical assumptions to con-
strain mathematical relationships between in- and outputs
and rely on a small number of parameters that usually map
onto domain-relevant concepts (McClelland, 2009). Promis-
ing examples for the current domain are knowledge tracing
models (Corbett & Anderson, 1994; Yudelson, Koedinger, &
Gordon, 2013) and learning-specific process models (Pavlik
& Anderson, 2008; Jastrzembski, Gluck, & Gunzelmann,
2006; Walsh, Gluck, Gunzelmann, Jastrzembski, & Krus-
mark, 2018; Walsh, Gluck, Gunzelmann, Jastrzembski, Krus-
mark, Myung, et al., 2018). These cognitive models would
trace acquisition and retention of skills over time in a much
more nuanced way and could be augmented with cluster
membership information (Ayers, Nugent, & Dean, 2008; Ne-
dungadi & Remya, 2014; Sense, Collins, Krusmark, & Jas-
trzembski, 2020).

Performance on the four skills is positively correlated but



correlations are small2 enough that a single user regularly ob-
tains very different scores. The lack of strong correlations
between skills explains why the user-based clusters (Fig. 1A)
yield less discriminating profiles. With this in mind, using
the skill-based clustering approach seems sensible. One im-
plication of these patterns is that the most efficient training
regime would consider skills independently, with personal-
ized schedules devised for each skill separately.

Ultimately, the goal is to transition from fixed training in-
tervals to fully personalized, adaptive schedules. The results
presented here support these efforts and will contribute to
building predictive models. However, retrospective simula-
tion studies are not sufficient evidence—we will only know
whether a given system works once it is used in a hospital
setting. Conducting such field studies is costly and should be
informed by well-founded assumptions. Recent efforts in this
domain have shown promising results when using a cognitive
model to adaptively schedule training intervals for nursing
students acquiring CPR skills (Jastrzembski et al., 2017; Oer-
mann et al., 2020, 2021).

To summarize, fuzzy membership to a small number of
clusters proved beneficial in constructing predictive perfor-
mance profiles for CPR refresher trainings. We expect that
the current results will generalize to future scenarios in which
we aim to insert specialized cognitive models into the predic-
tive pipeline. The gold standard for assessing the validity of
any predictive system would be a field study in which learn-
ers pursue personalized, adaptive schedules prescribed by the
model—until then, we believe the simulation approach un-
derpinning our current findings provides a good framework
for evaluating the applied potential of models and pitching
them against each other. It is our hope that such technology-
enhanced adaptive scheduling systems can help medical pro-
fessionals acquire and retain crucial skills that ultimately
translate to increased survival outcomes after cardiac arrest.
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