
The Predictive Performance Equation in a
Generalized Knowledge Tracing Machine

Florian Sense (florian.sense@infinitetactics.com)
InfiniteTactics, LLC
Dayton, OH, USA

Michael Collins (michael.collins.74.ctr@us.af.mil)
ORISE at AFRL

Dayton, OH, USA

Jong W. Kim (jong.kim@caemilusa.com)
CAE, Inc.

Wright Patterson Air Force Base, Ohio

Michael Krusmark (michael.krusmark.ctr@us.af.mil)
CAE, Inc.

Wright Patterson Air Force Base, Ohio

Tiffany Jastrzembski (tiffany.jastrzembski@us.af.mil)
Air Force Research Laboratory

Dayton, OH, USA

Abstract

Knowledge tracing models are at the heart of the educa-
tional data miner’s toolkit. Recent efforts have highlighted
the commonality of various approaches and proposed overar-
ching modeling frameworks that provide a broadly applicable
set of models that can be tailored to specific use cases. Specifi-
cally, these are knowledge tracing machines (KTM; Vie and
Kashima) and generalized knowledge tracing (GKT; Pavlik,
Eglington, and Harrell-Williams). Here, we hope to achieve
three goals: First, we point out the similarities between the ap-
proaches of KTMs and GKT. Second, we highlight that both
frameworks focus on feature engineering. We suggest that ex-
tending the scope to also include the predictive engine creates
an even more general and versatile approach—which we ten-
tatively call Generalized Knowledge Tracing Machines. This
paper showcases a simple use case for GKTM in which we
focus primarily on its distinguishing dimension: the choice of
predictive engines. Third, and finally, we demonstrate how
an established cognitive model—the Predictive Performance
Equation—can be cast as a GKTM. This example further illus-
trates the utility of the GKTM framework more generally and
points to new modeling avenues involving the PPE specifically.
Keywords: Knowledge tracing; feature engineering; knowl-
edge tracing machine; generalized knowledge tracing; predic-
tive performance equation.

Introduction
Modeling the acquisition and retention of knowledge for in-
dividual learners is a core concern of researchers in the cogni-
tive modeling community (Pelánek, 2017). Knowledge trac-
ing models are collectively used to this end—both for indi-
vidual and groups of learners; both descriptively and pre-
scriptively. These models’ insights and capabilities are the
bedrock of many cognitive/intelligent tutoring applications
(Corbett, Koedinger, & Hadley, 2001).

Recent efforts have presented overarching frameworks for
knowledge tracing models: Generalized knowledge tracing

(Pavlik, Eglington, & Harrell-Williams, 2021) makes it easy
to build many well-established models and implement novel
models; knowledge tracing machines (Vie & Kashima, 2019)
provide a useful framework for combing time-tested model-
ing techniques with additional input features. It should be
noted that these two frameworks are synergistic and share
an emphasis on the feature engineering dimension of model
building.

We would like to broaden the fruitful discussion kicked off
by these two frameworks by posing that besides considera-
tions regarding feature engineering, there is another dimen-
sion worth appraising: the choice of the statistical model that
learns the relationship between the engineered features and
the outcome measure of interest. We will term this dimension
the predictive engine and believe that it should be considered
in frameworks such as GKT and LKT.

These considerations tie in with a larger on-going de-
bate between machine learning and cognitive modeling ap-
proaches to student modeling (Sense, Jastrzembski, Mozer,
Krusmark, & van Rijn, 2019). In an attempt to benefit from
the best of both worlds, we present our considerations along
with an attempt to reformulate a well-established cognitive
model—the Predictive Performance Equation—such that it
matches the GKT/KTM framework. The main advantage of
this reformulation is not in the feature engineering step of the
model building but in the possibility to easily use different
predictive engines for the same set of engineered features.
This, we hope, preserves the key cognitive insights hard-
coded into the PPE but makes it “machine learning-ready”.
The results presented here focus on this effort and show how
this approach makes the PPE more easily applicable in set-
tings it was not designed for while highlighting the utility

of deliberately considering the predictive engine used to fit
a model more generally. To underscore our suggestion’s re-
liance on the earlier work, we tentatively refer to the frame-
work as generalized knowledge tracing machines (GKTM).

The GKTM Framework
As a first step, building a predictive model requires feature
engineering. Recent work by Pavlik et al. (2021) and Vie
and Kashima (2019) are great examples that focus on creat-
ing and comparing models that differ in the features that have
been engineered. The desired end result of the feature engi-
neering processes is a feature vector that contains all relevant
information that we want our model to leverage.

Using this feature vector, the second step is to “build a
prediction model, or learner, which will enable us to predict
the outcome for new unseen objects.” (Hastie, Tibshirani, &
Friedman, 2009, p. 2) We will refer to this learner—the sta-
tistical model of choice—as the predictive engine (Kuhn &
Wickham, 2020). Model fitting is the process of letting the
predictive engine learn how the (engineered) features relate
to the outcome measure. The work cited above, for example,
uses logistic (Pavlik et al., 2021) and probit regression (Vie &
Kashima, 2019) as the predictive engine. We want to empha-
size that a wide range of predictive engines can be applied to
the same feature vector: A neural network, a random forest,
or a gradient-boosted decision tree ensemble could all learn
the mapping between GKT-engineered feature vectors and an
outcome measure.

Re-casting the PPE in a GKTM To make the above more
concrete, we now present an alternative implementation of
the Predictive Performance Equation (PPE) (Jastrzembski,
Gluck, & Gunzelmann, 2006; Walsh, Gluck, Gunzelmann,
Jastrzembski, Krusmark, Myung, et al., 2018). However,
first some background on the PPE and its structure: Given
data from multiple users studying multiple stimuli, each user-
stimulus pairing has their own time series, t. The values in
t are subjected to two transformations that form the core of
the PPE. First, we compute the model time, T , which is the
weighted cumulative sum of elapsed time,

Ti =
N

∑
i=1

wi · ti with wi =
t−x
i

∑
N
j=1 t−x

j
(1)

in which the weight, x, is customarily set to 0.6. Addition-
ally, a stability term is computed as the lagged, cumulative
mean of the inverse log lag times, ∆:

stability =
1

N −1
·

N−1

∑
i=1

1
ln(∆i + e)

(2)

In PPE, the model time and stability are combined into the
model’s forgetting term, which has two free parameters, b and
m:

M = Nc ·T−d with d = b+m · stability (3)

The forgetting term is in turn combined with the learn-
ing term to yield the activation, M. The learning term, Nc,
is a simple counter of the number of prior instances, N, to
the power of a learning rate, c, which is usually fixed at
0.1. Finally, following ACT-R’s assumptions, the activation is
mapped onto performance using a logistic function with two
additional parameters, τ and s.

In what we refer to as vanilla PPE below, we take a time se-
ries t as input, compute the various components of the model,
and then estimate the four free parameters—b, m, τ, and s—of
the nested structure using gradient descent.

Research on PPE suggests it outperforms competing cogni-
tive models on a series of theoretical and applied criteria (we
refer the interested reader to (Walsh, Gluck, Gunzelmann,
Jastrzembski, Krusmark, Myung, et al., 2018) and (Walsh,
Gluck, Gunzelmann, Jastrzembski, & Krusmark, 2018) for
detailed background information). One limitation of the PPE
is that it can only take a single input: timestamps. By re-
casting the PPE—in what we think of as a “machine learning-
ready” format—, we aim to preserve the cognitive model’s
insights by making them integral to the feature engineering
step. At the same time, we want to divorce these features
from the predictive engine and create the ability to ingest an
arbitrary set of input features.

Related work
This section briefly reviews approaches that are relevant to the
current work. Note that (Vie & Kashima, 2019) and (Pavlik et
al., 2021) highlight how their—and thus by extension our—
approaches build on earlier models, specifically (Bayesian)
knowledge tracing, item response theory, and (variations of)
additive and performance factor analysis.

Half-life regression (HLR) In the words of Settles and
Meeder (2016), “HLR combines psycholinguistic theory with
modern machine learning techniques”. Their goal was to
hard-code a theoretical assumption about human memory—
an exponentially decaying forgetting curve—into a statistical
model. This model predicts the probability of correctly re-
calling an item from memory by estimating the corresponding
memory trace’s half-life along with additional weights for “an
arbitrarily large set of interesting features”. The weights for
each feature are estimated from empirical data using regular-
ized regression (see section 3.3 in Settles and Meeder (2016)
for details).

Generalized knowledge tracing (GKT) Pavlik et al.
(2021) present a framework for learner modeling that they
call GKT. The authors develop a symbolic notation system
that allows the user to flexibly specify the components in a
knowledge tracing model1. As the authors illustrate, many
classic EDM models are special cases of their generalized
framework. To demonstrate, the authors fit a range of mod-
els to 12 datasets and report that “no single learner model

1And the corresponding R package allows fitting such models:
https://github.com/Optimal-Learning-Lab/LKT

was best in all cases, further justifying a broad approach that
considers multiple learner model features and the learning
context.” Additional work from the same group accentuates
the broad applicability to boot (Pavlik Jr & Eglington, 2021;
Eglington & Pavlik Jr, 2019).

Knowledge tracing machines (KTM) Vie and Kashima
(2019) point out that classic EDM approaches—such as
additive factor and multidimensional item response theory
models—are special cases of factorization machines. Specifi-
cally, they show that when the modeling process is conceived
of as a general regression (or classification) problem, the dif-
ference between classic EDM models is primarily a matter of
feature engineering. For example, the additive factor model
(Cen, Koedinger, & Junker, 2006) includes a feature for the
number of attempts; the performance factor analysis model
(Pavlik Jr, Cen, & Koedinger, 2009) includes two separate
features for correct and incorrect attempts. The authors point
out how the underlying structure of these models can be ex-
tended by considering any number of additional features—
which they call side information. They demonstrate this func-
tionality by including embeddings learned from the data (Vie
& Kashima, 2019, see Fig. 2) but any features—such as those
in Duolingo (Vie, 2018)—can be handled. Recent work on
the KTM-based DAS3H further illustrates the broad appli-
cability of the approach (Choffin, Popineau, Bourda, & Vie,
2019, 2021; Choffin, Popineau, Bourda, et al., 2021).

Generalizing further The GKTM framework outlined
above can thus be considered as an extension and slight re-
framing of both GKT and KTM. Specifically, we point out
that their work focuses exclusively on the feature engineering
side of the modeling pipeline. We believe that our sugges-
tion of considering the predictive engine as an integral part
of the model has the potential to further extend the predictive
capacities of both GKT and KTM.

There is also great potential of cross-pollination between
GKT and KTM: Both approaches are build on the same
foundation of earlier work in the field and differ slightly
in their feature engineering focus. The difference be-
tween their choice of predictive engines—probit and logis-
tic regression—, however, is minimal. By pointing out the
similarities between GKT and KTM and the potential of con-
necting their feature engineering efforts with the plethora of
high-powered predictive engines available, we hope to gener-
alize the modeling pipeline even further.

Additionally, the current work should also be considered
a generalization of the PPE, in which we preserve its key
components but cast it as a general purpose knowledge trac-
ing model. The generalized PPE formulation can readily be
combined with parts of both GKT (by using different learn-
ing terms or simpler decay terms, for example, Pavlik et al.
(2021, see Table 1)) and KTM (by adding skill and stimuli
biases and embeddings, for example). Importantly, this over-
comes a major shortcoming of the current—“vanilla”—PPE
in that it would also readily handle the features ingested by

HLR, thereby greatly increasing its applied potential (Walsh,
Gluck, Gunzelmann, Jastrzembski, & Krusmark, 2018).

Model comparison
The goal of the model comparison is twofold: contrast vanilla
PPE with the re-cast, machine learning-ready version that has
access to the same input features, and demonstrate the flexi-
bility of the proposed framework by varying both the feature
engineering steps and predictive engines.

Data
We will perform the model comparison on a dataset from an
experimental study conducted in a sleep laboratory. The ex-
periment is described in detail in (Walsh et al., 2022). In
short, 72 participants studied digit-droodle paired associates
across 11 sessions spread over three days. The task was
to learn the correct two-digit response to a simple, abstract
line drawing called a “droodle” (Nishimoto, Ueda, Miyawaki,
Une, & Takahashi, 2010). The experimental within-subject
manipulation assigned three digit-droodle pairs to each of 17
spacing conditions that distributed the same number of rep-
etitions across sessions. They were exposed to each of the
51 stimuli during the intake meeting on the day prior to the
study.

A visual overview of the study design is shown in Figure 1.
It shows how the 11 sessions were distributed across three
days; the number on each tile indicates the number of repe-
titions per stimulus per session, separately for each schedule.
The third day only had a single session with two repetitions
and will serve as the test data in the current application (7,242
instances; 9.4%). The data from the first two days (69,768 in-
stances; 90.6%) will be used to train the models.

The data contain timestamped responses recorded from all
users, including accuracy and response time, as well as addi-
tional labels such as the day (of day) of the study, the session
number, and the schedule number.

Models
This section details the models we compare. In accordance
with the framework outlined above, we will explain the fea-
ture engineering process and the predictive engine used for
each model.

Vanilla PPE This model forms the baseline for our compar-
ison and represents the “traditional” approach to fitting this
type of cognitive model. As explained above, the time series
for each user-stimulus pair is used to engineer the model’s
core features (the learning term, model time, and stability)
before estimating its four free parameters (b, m, τ, and s) us-
ing gradient descent. The objective function minimizes the
negative log loss between the model’s fit and the empirical
accuracy2. One set of parameters is estimated independently
for each user (across all schedules and stimuli; Walsh et al.
(2022)).

2This loss function is sometimes called (binary) cross entropy
and is functionally identical to the binomial MLE (Myung, 2003).

1

3

19

5

1

2

4

5

3

9

4

4

2

4

4

4

9

10

2

4

3

5

10

5

5

2

4

19

2

6

2

3

19

5

1

2

4

5

3

9

5

4

2

4

4

4

10

10

2

4

3

5

10

5

5

2

4

19

2

6

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

Day 1 Day 2 Day 3

9:00
1

13:00
2

15:00
3

19:00
4

21:00
5

9:00
6

13:00
7

15:00
8

19:00
9

21:00
10

9:00
11

Level (12h)

Level (36h)

Long−Four (15h)

Long−Ten (12h)

Long−Two (18h)

Massed Early (24h)

Massed Early (48h)

Massed Late (12h)

Massed Late (36h)

Ramp (12h)

Ramp (36h)

Semi−Three (15h)

Semi−Three (39h)

Semi−Two (15h)

Semi−Two (39h)

Taper (12h)

Taper (36h)

Figure 1: Repetition schedules in the data. For the model
comparison, the purple sessions were used as training data
and the orange session as test data. Subsequent plots will
focus on the subset of schedules in darker colors.

GKTMLR This model is the direct re-cast of the vanilla
PPE as a general purpose, “machine learning-ready” knowl-
edge tracing model inspired by Pavlik et al. (2021) and Vie
and Kashima (2019). The feature engineering included two
aspects: computing the PPE model components (lag time,
model time, stability, and the learning term [LT]), and
one-hot encoding the user identifiers as detailed by (Vie &
Kashima, 2019, see their Fig. 1) (cf. with the user-level in-
tercepts in Pavlik et al. (2021)). This results in a total of 77
features: One OHE’ed feature for each of the 72 users plus
the raw time series plus the four PPE-based features.

As the predictive engine, we used a logistic regression
(hence “LR”), which adds one additional parameter: the
global bias, or intercept. All features except the learning term
were standardized prior to fitting. A logistic regression was
chosen to keep the comparison to vanilla PPE as direct as pos-
sible. This makes it similar to GKT and KTM as well. In fact,
this model resembles a GKT model with intercepts for each
learner and the features linesuc (or logsuc) and ppe (see
Pavlik et al. (2021, Table 1)).

There are key differences between this model and vanilla
PPE. First, the number of parameters differs substantially:
vanilla PPE estimates 4× 72 = 288 unique parameters; this
model estimates 78. Second, the vanilla PPE estimates sep-
arate b and m parameters for each learner, which means that
the weight assigned to the stability term in Eq. 3 can differ
between learners. This model, on the other hand, only esti-
mates a single coefficient for the stability feature across
all users. Third, this model estimates specific coefficients
(albeit across all users) for the other three PPE-derived fea-
tures, which vanilla PPE does not. And fourth, vanilla PPE
estimates two free parameters that control the logistic map-

ping from activation, M, to performance. This means that
two users with the same activation value can have different
performance profiles due to the flexibility afforded by user-
specific τ and s parameters. In contrast, this model estimates
a single intercept across all users and the coefficients esti-
mated for each one-hot encoded user feature can be seen as a
user-specific offset of the global bias.

GKTMDT This model uses the same input features as
GKTMLR with one addition: the lagged response time
(lagged rt; in seconds). As a predictive engine, this model
uses a single decision tree (hence “DT”) as implemented in
Therneau and Atkinson (2019). The response times were
added under the assumption that they convey relevant infor-
mation pertaining to memory strength (Madigan, Neuse, &
Roeber, 2000; Sense & van Rijn, 2022) and were lagged to
avoid data leakage. As such, this model serves as a minimal
example of how additional features not anticipated by the PPE
can easily be added alongside the PPE-based features. It also
highlights the possible utility of highly interpretable predic-
tive engines (see Figure 4).

GKTMRF This model contains all features of GKTMDT as
well as all information apparent in Figure 1: the (time of)
day, the session number, the schedule number, and the sched-
ule type (e.g., “level”, “long-four”, etc.). This model uses a
random forest as the predictive engine (hence “RF”).

We choose a random forest to demonstrate how a more
powerful ensemble of GKTMDT -like models can make bet-
ter use of the available features and achieve superior predic-
tive performance3. What sets this model apart from the other
models is that it contains a wider range of—both continu-
ous and categorical—features and that the random forest can
learn arbitrary (and potentially non-linear) relationships be-
tween features.

Approach

For the model comparison, we focus on the overall quality
of the fit and the predictions made by the different mod-
els. We follow Vie and Kashima (2019) and others and
present three metrics for fits and predictions: the classifica-
tion accuracy (ACC), the area under the ROC curve (AUC),
and the negative log likelihood4 (NLL). Together, these met-
rics give a holistic impression of the models’ performance.

Furthermore, we will zoom in on the differences between
the schedules since those were experimentally manipulated

3Also, Bentéjac, Csörgő, and Martı́nez-Muñoz (2020) suggest
that random forests require little to no hyper-parameter tuning to
work well, which makes it attractive as an out-of-the-box predictive
engine for the current demonstration (we used the implementation
by Wright and Ziegler (2017) with default settings).

4The NLL is computed as − 1
N ∑

N
i=1 yi · log(xi)+(1−yi) · log(1−

xi), where yi are the actual values and xi are the predictions for that
instance. To avoid log(0), xi values of exactly 0 or 1 were offset by
0.001. This means the maximal penalty is −log(0.001) = 6.9 and,
consequently, the highest possible NLL value is the same—i.e., a
model that predicts 0 for all correct responses and 1 for all incorrect
responses.

●●

●

●

●●●●
●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

ACC AUC NLL

train test train test train test

0

1

2

3

4

0.4

0.6

0.8

1.0

0.4

0.6

0.8

1.0

● ● ● ●GKTM DT GKTM LR GKTM RF vanilla PPE

Figure 2: Model fits (train) and quality of predictions (test)
for the three error metrics. Models are color-coded; lines cor-
respond to schedules; each model’s mean and standard error
across schedules are indicated by circles and error bars, re-
spectively.

in the study and induce the temporal variability that is our
prime interest here. Due to space constraints, we will focus
on a subset of six schedules. We chose the six schedules with
the lowest mean absolute deviation between the predictions
made by vanilla PPE and GKTMLR, since that is the primary
contrast we want to make here. The online supplement at
https://osf.io/kugjn/ contains versions of all figures in which
all schedules are shown.

Results of the model comparison
To reiterate, we have two goals: contrast vanilla PPE and
GKTMLR, and highlight the flexibility of the framework.

As a first step, we compare the models’ ability to fit the
training (purple sessions in Figure 1) and predict the test data
(orange session). The results are shown in Figure 2. The lines
represent the 17 schedules and colors correspond to the mod-
els. For the AUC and NLL, GKTMLR outperforms vanilla
PPE—the ACC hardly differentiates between the four mod-
els. This suggests the differences between the two models
played out to the advantage of the re-cast implementation in
these data.

To contrast the two models further, Figure 3 shows the six
schedules for which they produce the most similar predic-
tions. Interestingly, GKTMLR predicts more extreme forget-
ting, which is apparent (during fitting) between Day 1 and
2 in Long-Four and -Ten and (for predictions) in the larger
predicted decrease for repetition 20. This can lead to both
over- (Long-Ten) and underestimation (Massed Late) of the
actual amount of forgetting. However, both Figure 2 and
https://osf.io/rgksp suggest GKTMLR makes better predic-
tions overall.

Considering all four models in our assessment, we can see
that all GKTM versions achieve better AUC and NLL values,
with ACC values that vary drastically between schedules but

●

●

●

●

●

●●

●

●

●
●
●

●

●

●

●

●

●

●

● ●

●
●

●● ●

●

●

●

●
●

●

●

●
●

●

●
●

●
●

●
●

●

●
●

●●

●

●
●

●
●

●

●
●

●
●

●

●
●

●
●

●

●
●

●●

●

●
●

●●

●

●
● ●

●

●

●●

●●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●
●
●

●

●

●
●

●

●

●

●●
●

●

●

●

●

● ●

●

●●●

●
●

●

●

●
●
●●
●●

●

●

●

●
● ●●

●

●
●

●●

●

●● ●●

●

●●

●●

●

●
●

●●
●

●
●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●
●●

●

●

●

●

●

●

●

● ●●

●

●● ●●

●

●● ●
●

●

●●
●

●

●

●● ●
●

●

●●

●

●
●

●

●
●

●

●

●●
●

●

●

●●
●

●

●

●● ●

●

●

●● ●

●

●

●● ●

●

●

●● ●

●

●

●● ●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●●

●

●
●

●

●●

●

●

●●

●

●
●

●
●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●
●

●

●
●

●●

●

●
●

●●

●

●
●

●●

●

●●

●●

●

●

●

●●

●

●
●

●
●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●
●

●

●

●
●

●

●
●

●
●

●

●
●

●

●

●

●
●

●
●

●

●
●

●
●

●

●●

●

●

●
●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●
●
●

●

●
●

●
●

●

●

●

●

●●

●

● ●

●

●

●●
●

●

●

●●
●

●

●

●●
●
●

●

●●

●

●

●

●

●
●
●

●

●
●

●●

●

●
●

●●

●

●
●

●

●

●

●
● ●

●

●

●
●

●
●

●

●
● ●

●

●

●
●

●
●

●

●

●

Semi−Two (15h) Taper (12h)

Long−Ten (12h) Massed Late (12h)

Level (12h) Long−Four (15h)

0 5 10 15 20 0 5 10 15 20

0.4

0.6

0.8

1.0

0.4

0.6

0.8

1.0

0.4

0.6

0.8

1.0

repetition

● ● ● ● ●actual GKTM DT GKTM LR GKTM RF vanilla PPE

Figure 3: Fit (circles) and predictions (triangles) for all mod-
els; aggregated per repetition for six schedules. “Actual” are
the empirical means; lines group repetitions within a session.
See https://osf.io/bxjp9 for all schedules.

average out to be similar across all models. Somewhat sur-
prisingly, even the GKTMDT model can compete with vanilla
PPE, which suggests the lagged response times are very infor-
mative. The decision tree learned by the model is shown in
Figure 4 and confirms this notion. Similarly, we can inspect
the most powerful model: Figure 5 shows the feature impor-
tance for the random forest learned by GKTMRF . Again,
the lagged rt and lag are most important. However, it
draws on the model time and stability as well, even though
the former is highly correlated with lag-time (r = 0.866; see
https://osf.io/pm9zv for correlations between all numeric fea-
tures)5.

This exploration illustrates two things: (a) Even with a
fixed set of engineered features, different predictive engines
can achieve different results, and (b) there is a trade-off be-
tween more powerful predictive engines and interpretabil-
ity. Interpretable machine learning tools are being devel-
oped (Molnar, 2019, 2020; Greenwell, Boehmke, & Mc-
Carthy, 2018) to hopefully make these models more relevant
to researchers working in educational settings, where inter-
pretability is often paramount.

5For GKTMLR, we can also get an idea of the feature importance:
coefficients for the PPE terms are lag = −0.468, stability = 0.508,
model time = 0.166, and −0.030 for the raw elapsed time. Since
these features were all standardized, their absolute values signal rel-
ative importance.

Discussion
To summarize, the preceding model comparison showed that
the Predictive Performance Equation (PPE; (Walsh, Gluck,
Gunzelmann, Jastrzembski, Krusmark, Myung, et al., 2018))
can be re-cast in what we termed a generalized knowledge
tracing machine (GKTM). Leaning heavily on GKT (Pavlik
et al., 2021) and KTM (Vie & Kashima, 2019), GKTM is
a framework for flexible feature engineering that can be con-
nected to a suite of predictive engines. We hope that the above
has demonstrated the extent to which a model using PPE-
derived features can easily be extended with additional fea-
tures and the choice of a suitable predictive engine depends
on the researcher’s goal.

For work related to the PPE, we believe this new approach
to using the model’s insight brings a number of advantages.
First, the outcome measure can be on any scale that suits
the chosen predictive engine. This opens the door to mod-
eling novel scenarios (e.g., one requiring multi-label classi-
fication). Second, the new implementation can handle any
number of additional predictive features not foreseen by the
original PPE (or similar cognitive models). Here, we show-
cased an example in which the response time was highly in-
formative (see Figures 4 and 5). In many cases, one might re-
alize that non-temporal features are generally more important
(see, e.g., Table 4 in Settles, Brust, Gustafson, Hagiwara, and
Madnani (2018)). In such cases, the third advantage is that
this approach allows seamless integration of insights from
a cognitive model into a general purpose machine learning
model (Sense et al., 2021). And fourth, simpler GKTMLR
and GKTMDT variants exemplified here are faster to fit and
have fewer parameters than vanilla PPE. Furthermore, those
parameters are arguably more interpretable. This is not nec-
essarily true for more complex predictive engines but that
might not be a problem if the goal is prediction rather than
explanation (Shmueli et al., 2010; Yarkoni & Westfall, 2017).
One reason the GKTM models outperform vanilla PPE is be-
cause they are fit to the entire training data at once; vanilla
PPE considers each user’s data independently. Versions of
the PPE that use hierarchical Bayesian methods for param-
eter estimation (Collins, Gluck, Walsh, Krusmark, & Gun-
zelmann, 2016; Collins, Sense, Krusmark, & Jastrzembski,

lagged_rt >= 1.5

lag >= 160

lagged_rt >= 2.4

repetition < 11

lagged_rt < 1.5

lag < 160

lagged_rt < 2.4

repetition >= 11

0.30 3% 0.44 8% 0.68 2% 0.69 22% 0.93 65%

FALSE FALSE TRUE TRUE TRUE

Figure 4: The decision tree learned by GKTMDT .

schedule_type

session

trial

repetition

time

model_time

stability

lag

lagged_rt

0 1000 2000
Feature importance: Gini index as a measure of impurity

Figure 5: Feature importance for GKTMRF .

2020; Walsh et al., 2022) have similar benefits but are com-
putationally expensive.

There are a number of ways we would like to extend the
current work. One is highlighted by the fact that the deci-
sion tree does fairly well in terms of prediction, even though
it produces a theoretically implausible pattern (performance
on repetition 21 is predicted to be lower than on 20). This un-
derlines the importance of extending cognitive models’ abil-
ity to use additional input features: the decision tree relies
heavily on the (lagged) response time, which the PPE can-
not. The fact that it uses lagged RT, then lag, then lagged RT
again (Figure 4), also suggests that there is likely an interac-
tion between the two top features in the random forest (Figure
5). Interpretable machine learning techniques (Molnar, 2019;
Masis, 2021) should be explored to get a better grasp of fea-
ture interactions in complex predictive engines. Promising
methods exist (Greenwell et al., 2018) that can be applied to
models like the random forest used here or the other engines
like recurrent neural networks (Lai, Wang, & Ling, 2021).

More generally, we would like to pitch the new formula-
tion of the PPE against datasets used by Pavlik et al. (2021)
and Vie and Kashima (2019) to get a better idea of the rela-
tive importance of PPE-based features as well as the differ-
ences in predictive accuracy for different predictive engines.
For such efforts, adding OHE vectors for stimuli and knowl-
edge components (like Vie and Kashima (2019) suggest), ad-
ditional features based on embeddings (also Vie and Kashima
(2019)), and whatever seems sensible off the menu offered by
Pavlik et al. (2021) would be logical first steps for future fea-
ture engineering.

Given the wide range of possible input features, attention
should also be paid to principled feature selection mecha-
nisms. One obvious approach would be using regulariza-
tion, as done by Settles and Meeder (2016).This is partic-
ularly attractive if one wants to use logistic regression as
the predictive engine. Independent of the predictive engine,
well-established filter, wrapper, and hybrid approaches are
worth considering (Hua, Tembe, & Dougherty, 2009; Chan-
drashekar & Sahin, 2014).

Acknowledgments
This work was supported by a 711th Human Performance
Wing Chief Scientist Seedling Grant and a research grant
awarded by the Air Force Office of Scientific Research Sci-

ence of Information, Computation, Learning, and Fusion Pro-
gram.

Data were wrangled in R (R Core Team, 2020) using
tidyverse (Wickham et al., 2019); figures were created with
ggplot (Wickham, 2016), rpartplot (Milborrow, 2020),
and vip, (Greenwell & Boehmke, 2020). The modeling
pipeline was implemented using tidymodels (Kuhn & Wick-
ham, 2020).

References

Bentéjac, C., Csörgő, A., & Martı́nez-Muñoz, G. (2020). A
comparative analysis of gradient boosting algorithms. Ar-
tificial Intelligence Review, 1–31.

Cen, H., Koedinger, K., & Junker, B. (2006). Learning factors
analysis–a general method for cognitive model evaluation
and improvement. In International conference on intelli-
gent tutoring systems (pp. 164–175).

Chandrashekar, G., & Sahin, F. (2014). A survey on feature
selection methods. Computers & Electrical Engineering,
40(1), 16–28.

Choffin, B., Popineau, F., Bourda, Y., et al. (2021). Extending
adaptive spacing heuristics to multi-skill items. Journal of
Educational Data Mining, 13(3), 69–102.

Choffin, B., Popineau, F., Bourda, Y., & Vie, J.-J. (2019).
DAS3H: modeling student learning and forgetting for op-
timally scheduling distributed practice of skills. arXiv
preprint arXiv:1905.06873.

Choffin, B., Popineau, F., Bourda, Y., & Vie, J.-J. (2021).
Evaluating DAS3H on the EdNet dataset. In Aaai 2021-the
35th conference on artificial intelligence/imagining post-
covid education with ai.

Collins, M. G., Gluck, K. A., Walsh, M. M., Krusmark, M.,
& Gunzelmann, G. (2016). Using prior data to inform
model parameters in the predictive performance equation.
In Cogsci.

Collins, M. G., Sense, F., Krusmark, M., & Jastrzembski,
T. S. (2020). Improving predictive accuracy of mod-
els of learning and retention through bayesian hierarchical
modeling: An exploration with the predictive performance
equation. In Cogsci.

Corbett, A. T., Koedinger, K., & Hadley, W. S. (2001).
Cognitive tutors: From the research classroom to all class-
rooms. In Technology enhanced learning (pp. 215–240).
Routledge.

Eglington, L. G., & Pavlik Jr, P. I. (2019). Predictiveness of
prior failures is improved by incorporating trial duration.
Grantee Submission, 11(2), 1–19.

Greenwell, B. M., & Boehmke, B. C. (2020). Vari-
able importance plots—an introduction to the vip pack-
age. The R Journal, 12(1), 343–366. Retrieved from
https://doi.org/10.32614/RJ-2020-013

Greenwell, B. M., Boehmke, B. C., & McCarthy, A. J.
(2018). A simple and effective model-based variable im-
portance measure. arXiv preprint arXiv:1805.04755.

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The ele-
ments of statistical learning: data mining, inference, and
prediction. Springer Science & Business Media.

Hua, J., Tembe, W. D., & Dougherty, E. R. (2009). Per-
formance of feature-selection methods in the classification
of high-dimension data. Pattern Recognition, 42(3), 409–
424.

Jastrzembski, T. S., Gluck, K. A., & Gunzelmann, G. (2006).
Knowledge tracing and prediction of future trainee perfor-
mance. In Interservice/industry training, simulation, and
education conference (pp. 1498–1508).

Kuhn, M., & Wickham, H. (2020). Tidymodels: a collection
of packages for modeling and machine learning using tidy-
verse principles. [Computer software manual]. Retrieved
from https://www.tidymodels.org

Lai, Z., Wang, L., & Ling, Q. (2021). Recurrent knowledge
tracing machine based on the knowledge state of students.
Expert Systems, 38(8), e12782.

Madigan, S., Neuse, J., & Roeber, U. (2000). Retrieval la-
tency and “at-risk” memories. Memory & cognition, 28(4),
523–528.

Masis, S. (2021). Interpretable machine learning with
python: Learn to build interpretable high-performance
models with hands-on real-world examples. Packt Publish-
ing Ltd.

Milborrow, S. (2020). rpart.plot: Plot ’rpart’
models: An enhanced version of ’plot.rpart’
[Computer software manual]. Retrieved from
https://CRAN.R-project.org/package=rpart.plot
(R package version 3.0.9)

Molnar, C. (2019). Interpretable machine learning.
(https://christophm.github.io/interpretable-ml-book/)

Molnar, C. (2020). Interpretable machine learning. Lulu.
com.

Myung, I. J. (2003). Tutorial on maximum likelihood estima-
tion. Journal of mathematical Psychology, 47(1), 90–100.

Nishimoto, T., Ueda, T., Miyawaki, K., Une, Y., & Takahashi,
M. (2010). A normative set of 98 pairs of nonsensical pic-
tures (droodles). Behavior research methods, 42(3), 685–
691.

Pavlik, P. I., Eglington, L. G., & Harrell-Williams, L. M.
(2021). Logistic knowledge tracing: A constrained frame-
work for learner modeling. IEEE Transactions on Learning
Technologies.

Pavlik Jr, P. I., Cen, H., & Koedinger, K. R. (2009). Per-
formance factors analysis–a new alternative to knowledge
tracing. In Proceedings of the 14th international confer-
ence on artificial intelligence in education (pp. 531–538).

Pavlik Jr, P. I., & Eglington, L. G. (2021). Modeling
the ednet dataset with logistic regression. arXiv preprint
arXiv:2105.08150.

Pelánek, R. (2017). Bayesian knowledge tracing, logis-
tic models, and beyond: an overview of learner modeling
techniques. User Modeling and User-Adapted Interaction,

27(3), 313–350.
R Core Team. (2020). R: A language and environment for

statistical computing [Computer software manual]. Vienna,
Austria. Retrieved from https://www.R-project.org/

Sense, F., Jastrzembski, T. S., Mozer, M. C., Krusmark, M.,
& van Rijn, H. (2019). Perspectives on computational mod-
els of learning and forgetting. In International conference
on cognitive modeling.

Sense, F., & van Rijn, H. (2022). Optimizing fact-learning
with a response-latency-based adaptive system. PsyArXiv
preprint 10.31234/osf.io/chpgv.

Sense, F., Wood, R., Collins, M. G., Fiechter, J., Wood,
A., Krusmark, M., . . . Myers, C. W. (2021). Cognition-
enhanced machine learning for better predictions with lim-
ited data. Topics in Cognitive Science.

Settles, B., Brust, C., Gustafson, E., Hagiwara, M., & Mad-
nani, N. (2018). Second language acquisition modeling. In
Proceedings of the thirteenth workshop on innovative use
of nlp for building educational applications (pp. 56–65).

Settles, B., & Meeder, B. (2016). A trainable spaced repe-
tition model for language learning. In Proceedings of the
54th annual meeting of the association for computational
linguistics (volume 1: long papers) (pp. 1848–1858).

Shmueli, G., et al. (2010). To explain or to predict? Statistical
science, 25(3), 289–310.

Therneau, T., & Atkinson, B. (2019). rpart:
Recursive partitioning and regression trees
[Computer software manual]. Retrieved from
https://CRAN.R-project.org/package=rpart (R
package version 4.1-15)

Vie, J.-J. (2018). Deep factorization machines for knowledge
tracing. arXiv preprint arXiv:1805.00356.

Vie, J.-J., & Kashima, H. (2019). Knowledge tracing ma-
chines: Factorization machines for knowledge tracing. In
Proceedings of the aaai conference on artificial intelli-
gence (Vol. 33, pp. 750–757).

Walsh, M. M., Gluck, K. A., Gunzelmann, G., Jastrzembski,
T., & Krusmark, M. (2018). Evaluating the theoretic ade-
quacy and applied potential of computational models of the
spacing effect. Cognitive science, 42, 644–691.

Walsh, M. M., Gluck, K. A., Gunzelmann, G., Jastrzemb-
ski, T., Krusmark, M., Myung, J. I., . . . Zhou, R. (2018).
Mechanisms underlying the spacing effect in learning: A
comparison of three computational models. Journal of Ex-
perimental Psychology: General, 147(9), 1325.

Walsh, M. M., Krusmark, M., Jastrzembski, T., Hansen,
D. A., Honn, K. A., & Gunzelmann, G. (2022). Enhancing
learning and retention through the distribution of practice
repetitions across multiple sessions. PsyArXiv Preprint:
10.31234/osf.io/dmf4p.

Wickham, H. (2016). ggplot2: Elegant graphics for data
analysis. Springer-Verlag New York. Retrieved from
https://ggplot2.tidyverse.org

Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan,
L. D., François, R., . . . Yutani, H. (2019). Welcome to the

tidyverse. Journal of Open Source Software, 4(43), 1686.
doi: 10.21105/joss.01686

Wright, M. N., & Ziegler, A. (2017). ranger: A fast imple-
mentation of random forests for high dimensional data in
C++ and R. Journal of Statistical Software, 77(1), 1–17.
doi: 10.18637/jss.v077.i01

Yarkoni, T., & Westfall, J. (2017). Choosing prediction over
explanation in psychology: Lessons from machine learn-
ing. Perspectives on Psychological Science, 12(6), 1100–
1122.

