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Abstract

The serial reaction time task is widely used to study learning and memory. The task is tradi-

tionally administered by showing target positions on a computer screen and collecting

responses using a button box or keyboard. By comparing response times to random or

sequenced items or by using different transition probabilities, various forms of learning can

be studied. However, this traditional laboratory setting limits the number of possible experi-

mental manipulations. Here, we present a virtual reality version of the serial reaction time

task and show that learning effects emerge as expected despite the novel way in which

responses are collected. We also show that response times are distributed as expected.

The current experiment was conducted in a blank virtual reality room to verify these basic

principles. For future applications, the technology can be used to modify the virtual reality

environment in any conceivable way, permitting a wide range of previously impossible

experimental manipulations.

Introduction

Nissen and Bullemer [1] introduced the serial reaction time task (SRTT) to study differences

between introspective and performance measures of learning. Since their introduction of the

task, it has been used widely as a way to “explore the processes underlying a broad range of

behaviors, including the cognitive and biological principles of learning and memory” ([2],

p. 10073). In the SRTT, learning is operationalized as a speed-up in response times (RTs) to a

sequence of stimuli. Specifically, four target positions are shown horizontally on screen and

are mapped onto four buttons on the keyboard. The participant simply presses the corre-

sponding key as quickly as possible when a target lights up. A baseline for RTs can be obtained

by starting the task with a block in which the targets light up randomly (excluding repetitions

of the same position). Then, a repeating sequence of target positions is introduced. By using

relatively long sequences (e.g., 10 items as in [1]), participants will remain unaware of a repeat-

ing pattern even though their RTs decrease (for an explicit learning variation, see, e.g., [3]).

Learning measures are then derived by comparing RTs on random and sequenced blocks [2].

Roughly a decade after its introduction, Schvaneveldt and Gomez [4] proposed a probabi-

listic version of the SRTT. Instead of comparing performance in un-sequenced blocks with
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performance in sequenced blocks, the target position on any given trial has a probabilistic

dependency on the target position of the previous trial. Specifically, there are two sequences,

one with a high and one with a low probability. The two sequences used in Schvaneveldt and

Gomez [4] are A = (1, 2, 4, 3) and B = (1, 3, 4, 2) and are recycled sequentially to generate stim-

ulus sequences for the experiment. If A is the high-probability sequence for a given participant,

for example, a target in position 1 (on screen) will be followed by either a target in position 2

(selected from sequence A) or 3 (from sequence B), with a high and low probability, respec-

tively. Which sequence a target is drawn from on any given trial is determined by a weighted

coin flip. In each case, every other target position is independent of whether A or B is the high-

probability sequence (i.e., 1 and 4 are at the same location in sequence A and B). Since both A

and B contain all target positions equally often, targets will, on average, appear equally often at

each position. Thus, it is not that participants learn that one position is generally more fre-

quent but that certain positions are more likely to be the target than another given the previous
target. Hence, participants learn to anticipate certain probabilistic transitions rather than a

fixed sequence.

In this context, learning of the probabilistic transitions can be assessed by contrasting

responses on trials corresponding to the probable and improbable sequences. Manipulating

the conditional probabilities of transitions has several advantages: Error rates become informa-

tive, especially on improbable transitions, because most incorrect responses correspond to the

probable target, which indicates learning and anticipation of the probable sequence [4]. Fur-

thermore, the learning of the probabilistic sequence can be more easily distinguished from

overall on-task speed-ups in RTs. One would expect participants to get faster as a function of

the number of completed trials even if there is no embedded sequence. If each trial is a proba-

ble or improbable transition, one can scrutinize the differences in RTs (or error rates) between

each transition type as an interaction with trial number.

Due to its simplicity, the SRTT is a popular lab task used to study a wide range of phenom-

ena related to learning and memory [2]. With the advance of new technology comes the

opportunity to expand the set of possible experiments to run and manipulations to implement.

The advent of wearable virtual reality (VR) headsets as well as the increased accessibility and

usability of software to create VR environments is particularly exciting in this regard [5,6].

Rizzo and Koenig [7] surveyed the development of VR technology for clinical applications and

concluded that VR is ready for primetime and has similar potential for many areas of psychol-

ogy. VR also has great potential for the neuroscientific study of social processes because it can

provide stimulus material that more closely resembles real world activities and interactions,

and Parsons, Gaggioli, and Riva [8] argue that VR allows experimenters to maintain control

while elevating ecological validity. Neguţ, Matu, Sava, and David [9] present a meta-analytic

review of task difficulty when neuropsychological tests are administered either in VR or as

classical pen-and-paper or computerized versions. They conclude that cognitive performance

is poorer in VR, likely due to higher task complexity, which might consume additional cogni-

tive resources. In another meta-analysis of VR measures of neuropsychological assessment,

however, they show that VR measures have the necessary sensitivity to detect cognitive

impairment, and suggest that VR measures have potential for many neuropsychological assess-

ment applications [10].

If a task or test is to be implemented in VR, however, certain aspects will have to be adapted

to the new environment. For the SRTT, for example, the response options are traditionally pre-

sented horizontally on the computer screen and associated with keys on the keyboard or a

response box. A keyboard is usually not available in a VR environment and using the VR con-

troller(s) is more natural than having participants hold a response box. However, VR control-

lers require different muscle movements, especially as the selection of alternatives is typically
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performed by hand- or arm-movements to move a pointer in 3D-space. Although this is a very

naturalistic response, which is immediately understood and easily performed by participants,

the increased complexity of these movements, and increased noise levels associated with these

movements, could potentially result in reduced signal-to-noise ratios. Here, we present data

from an implementation of the probabilistic SRTT in VR, using a VR controller to provide

responses, in an attempt to verify that expected learning effects can be reproduced in VR. Spe-

cifically, we expected to replicate response patterns from traditional, two-dimensional imple-

mentations of the SRTT: A general reduction of RTs over time that interacts with transition

probability such that high-probability transitions become increasingly faster over time com-

pared to low-probability transitions.

Methods

A total of 29 participants completed the experiment. Of those, 19 were female and the average

age across all participants was 20.5 (range: [18; 27], SD: 2.1). Participants were recruited from

the participant pool of the University of Groningen and participated for course credit. All par-

ticipants gave written informed consent and the study was approved by the Ethics Committee

Psychology (ID: 16300-S-NE). All students in the participant pool were eligible for participa-

tion and none were excluded based on their on-task performance. An experimental session

started with the experimenter describing in detail what the participant was asked to do and a

detailed explanation of the information on the informed consent forms, explaining in particu-

lar that participants can stop at any moment (without any penalty) and that they should inform

the experimenter in case they are uncomfortable at any point. None of the participants indi-

cated any discomfort or withdrew from the study. The HTC Vive accommodates most pre-

scription glasses and we did not specify that wearing glasses would exclude participants from

participating. A handful of participants did wear their glasses during the experiment but did

not report any discomfort and none of the glasses were too large to cause any issues.

Procedure

Participants received general instructions for the virtual reality serial reaction time task

(VR-SRTT) and then sat in a chair, wearing a HTC Vive VR headset and a single hand-held

controller (in their dominant hand). The four possible target positions were presented as gray

spheres in the VR environment such that they constituted the four corners of an invisible

square. Participants were instructed to position themselves (and the chair they sat in) such that

they could reach all four targets easily, with minimal arm movement, from a position at the

center of the invisible square. A screenshot of how the environment looked like to the partici-

pant is shown in Fig 1.

The two sequences from Schvaneveldt and Gomez [4] were used to generate probabilistic

target sequences. Which of the two served as the high probability sequence for each participant

was determined randomly, and high-transition probabilities occurred in 65% of trials (com-

pared to 80% in the original study). On each trial, the target sphere’s color changed to blue

until the participant used the controller to reach out to one of the spheres. As soon as the con-

troller intersected with any sphere, a response was recorded. Each response had two compo-

nents: accuracy (correct if target sphere was touched, incorrect otherwise) and RT (the time, in

milliseconds, between the lighting up of the target sphere and the moment any sphere was

touched). After a response was detected, visual (corrective) feedback was provided, and the

500 ms inter-stimulus interval commenced.

First, participants completed 25 practice trials in which the order of the targets was entirely

random (but target positions could not repeat). Next, they completed four blocks with 150
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trials each. Every block was followed by a self-paced break to minimize fatigue. Completing

the task took between 4 and 8 minutes from the moment the practice part was completed.

In the context of this project a number of distractors and their possible impact on RTs were

tested. The distractors were different sounds and slight changes in the VR environment (e.g.,

flickering lights) and were found not to influence RTs at all. Therefore, the general learning

effects reported in the Results section will be presented independently of the presence/absence

of distractors. We refer the interested reader to the online supplement at https://osf.io/exnvd/,

which includes a detailed description of the individual distractors, a number of annotated anal-

yses of the possible effects of these distractors, information about the randomization procedure

used for distractors, as well as the audio files used as distractors (see sub-section “Virtual Real-

ity Serial Reaction Time Task (VR-SRTT)” in https://osf.io/vxyka/ as well as the sound files in

task/stressors/ at https://osf.io/exnvd/).

Results

Performance during the 25 practice trials was near-perfect for all participants: Overall 98.8%

of responses were correct and no-one made more than two errors. This indicates that the task

was understood intuitively and immediately. The data from the practice trials were discarded.

Performance during the task itself was also near-perfect: Incorrect responses only accounted

for 0.6% of all trials. Responses were also rather fast: The median response time (RT) across all

correct responses was 425 ms and 90% of the responses were between 302 and 603 ms, with

only 0.5% of all correct trials resulting in RTs longer than one second. For all subsequent anal-

yses, we removed incorrect trials and those with RTs longer than one second. This leaves data

from 17,214 trials across 29 participants.

We expected participants to respond faster on high-probability transitions than on low

probability transitions and also expected a general speed-up as the task progresses. The aggre-

gate data are presented in Fig 2 and follow the expected pattern. Bins with 30 trials each were

created and means and within-subject standard errors [11] were computed for each bin. The

RTs on the high-probability transitions are consistently faster than those on the low-probabil-

ity transitions. Furthermore, RTs are lower for later blocks and the difference between the two

Fig 1. Screenshot of the VR environment. Shown is the arrangement of the four target positions while one target is lit

up, indicating the participant should reach out and touch that target as quickly as possible.

https://doi.org/10.1371/journal.pone.0198759.g001
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transition probability conditions increases for later blocks. The plot also highlights that differ-

ences in RTs emerge early on.

For the statistical analysis, a series of Bayesian linear mixed-effects regression models were

fit to the RTs of each trial, using transition probability, trial number, and their interaction as

predictors. To account for between-subject variance in RTs, random intercepts for participants

were added. The models are shown in Table 1 along with the Bayes factors. To ease interpreta-

tion, the Bayes factors are shown relative to the worst model, revealing that, for example, the

model including only transition probability as a main effect (model 2) is approximately one

quadrillion times more likely to have generated the observed data than the model including

only trial number as a predictor (model 1). The best-fitting model included all listed predictors

(model 4) and is approximately 5 times more likely than the model including both main effects

but no interaction (model 3; 1.161×1034 / 2.258×1033 = 5.14). See the supplement for the

model fitting and selection procedure using Bayes factors (using the BayesFactor package,

Table 1. Summary of the Bayesian linear mixed-effects regression model comparison results.

Linear Mixed-Effects Models Bayes factors relative to 1.

1. Trial Number 1

2. Transition Probability 1.057×1015

3. Trial + Probability 2.258×1033

4. Trial + probability + Trial:Probability 1.161×1034

All four models include random effects for participants and Bayes factors are expressed relative to the worst-fitting

model to ease interpretation.

https://doi.org/10.1371/journal.pone.0198759.t001

Fig 2. Average response time across trials. Trials have been binned to emphasize the overall pattern. Error bars are within-subject

standard errors [11]. Note that there are fewer trials in the low-probability transition condition, resulting in slightly wider error bars.

https://doi.org/10.1371/journal.pone.0198759.g002
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[12]). Also included in the supplement are estimates of the model’s coefficients as well as a tra-

ditional linear mixed-effects regression (using the lme4 package, [13]) for comparison. See

sub-section “Traditional analysis using lme4” in the file “VR-SRTT_analyses.html” at https://

osf.io/exnvd/.

The best-fitting model revealed by the Bayes model comparison confirms the pattern appar-

ent in Fig 2: RTs on probable transitions are estimated to be faster than those on improbable

transitions and each additional trial reduces the expected RT further. However, this reduction

as a function of trial number interacts significantly with transition probability such that RTs

decrease more for probable transitions than for improbable transitions as trials progress.

Discussion

The goal of the current study was to test whether probabilistic motor sequence learning effects

observed in the traditional serial reaction time task (SRTT) can be reproduced in a virtual

reality (VR) environment. The graphical overview in Fig 2 along with the statistical analysis

confirm that we see the expected interaction effects: Participants respond faster to high-proba-

bility transitions and their general speed-up over trials is more extreme for high-probability

transitions.

These findings are reassuring and open a new avenue for controlled experimental studies

using a VR SRTT. In the current experiment, the VR environment was a featureless gray

room. One of the advantages of VR, however, is that the environment can be manipulated in

any conceivable way [6]. A series of studies have demonstrated the viability and usefulness of

such an approach for the Stroop task: Parsons, Courtney, and Dawson [14] have shown that

traditional Stroop effects can be reproduced in VR while varying the threat-level of the VR

environment (also see [15]). Parsons and Barnett [16] showed that Stroop effects still emerge

when the task is presented in a VR apartment environment and are comparable to pen-and-

paper and computerized Stroop tasks. Similarly, Parsons and Carlew [17] had participants

complete a Stroop task in a virtual classroom and showed that individuals with autism spec-

trum disorder performed worse in the presence of distractors. This line of research sets prom-

ising precedents and analogous manipulations–that are much more immersive than the

featureless gray room used in the present study–could be implemented for the SRTT to test

their potential effects on motor sequence learning.

The current work could also be extended by recording additional measures while the task is

performed. For example, Kachergis, Berends, de Kleijn, and Hommel [18] have presented

analyses of mouse trajectories recorded during the performance of an SRTT. Their work could

be extended into the third dimension by tracking the trajectories of the VR controller, reveal-

ing anticipation and prediction of the learned probabilistic structure of the task. Furthermore,

several commercial options are available to record eye-movements in a VR headset, providing

yet another way to measure anticipation, prediction, and the deployment of attention during

the task.

An additional question is to which extent the responses collected in the VR environment

are comparable to those collected in traditional lab settings. Table 2 presents RTs and error

rates from the original SRTT studies by Nissen and Bullemer [1] and Schvaneveldt and Gomez

[4] along with a number of more recent studies. For comparison, the overall mean RT across

all 17,214 trials included in our analyses is 439ms, while it is 433ms and 450ms for the probable

and improbable transition conditions, respectively, and these numbers are also listed in the

table. Mean RTs from the present study seem to be in line with most of the means in Table 2.

The RTs reported in the table come from a range of different populations and experimental

setups so it is not surprising that there is some variance. Given that learning in the SRTT is
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PLOS ONE | https://doi.org/10.1371/journal.pone.0198759 June 12, 2018 6 / 9

https://osf.io/exnvd/
https://osf.io/exnvd/
https://doi.org/10.1371/journal.pone.0198759


conceptualized as a relative speed-up in RTs rather than their absolute values, however, makes

it more important that our analyses confirm the presence of the expected pattern. It is reassur-

ing, however, that the RTs collected in our experiment are not out of line with other studies,

although they required a more complex motor response (moving of hand/wrist/arm rather

than a button press).

Our error rates, on the other hand, are lower than those reported in any other listed study.

One would expect participants to make more errors on improbably transition trials (in the

probabilistic paradigm) or random blocks (in the deterministic paradigm) and this pattern is

observed both in our data as well as all other studies reported in Table 2. The error rates col-

umn suggests that error rates vary greatly between studies but that none of them are as low as

the ones reported here. The current study does not allow us to pinpoint the source of this dif-

ference. We believe that the type of motor response that is required to give a response (pressing

a button vs. reaching out to a sphere) would be a prime candidate for further investigation into

this difference and that recording the response trajectories through 3D space would be a prom-

ising way to illuminate this issue.

To summarize, the experiment reported here is comparable to traditional versions of the

(probabilistic) serial reaction time task despite having been implemented in a novel virtual

reality environment. Learning effects emerge as expected and can be traced using the change

in response time distributions as in the traditional setting. These results are reassuring and

open the door to innovative experimental manipulations for an established experimental para-

digm using state-of-the-art technology.

Acknowledgments
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